
1

Multivariate Regression with Gross Errors
on Manifold-valued Data
– Supplemental Material

Xiaowei Zhang, Member, IEEE, Xudong Shi, Yu Sun, Member, IEEE, Li Cheng, Senior Member, IEEE

F

CONTENTS

1 Overview 1

2 Convergence Analysis of PALMR 1
2.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Partial Derivatives of E 7

4 Manifold of Symmetric Positive Definite Matrices 8

5 Additional Experiments on Real DTI Data 8
5.1 Additional Information on DTI Data with Registration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Region of Interest Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

References 12

1 OVERVIEW

In this supplementary material, we present supplemental material to the main text. The rest of this material is organized as follows. In
Section 2, we provide convergence analysis of the proposed algorithm PALMR. For this purpose, we first present some necessary results
for smooth functions and K-L functions on Hadamard manifolds, then derive the detailed proof of the convergence results in Theorem
1 of the main text. In Section 3, we show the derivation of partial derivatives of the loss function ∂pE, ∂vjE, and ∂giE. These partial
derivatives are crucial components of Algorithm 2 in the main text. In Section 4, we provide several operations on the manifold of
symmetric positive definite matrices, including the Riemannian metric, geodesic distance, exponential map, inverse exponential map,
and parallel transport. All of these operations have been implemented in the codes availabel on our project websit. In Section 5, we
show more experimental results on the real DTI data.

2 CONVERGENCE ANALYSIS OF PALMR
In this section we provide convergence analysis of PALMR (Algorithm 1 in the main paper), including preliminary results about
nonsmooth analysis and Kurdyka–Łojasiewicz (K-L) property on Hadamard manifolds in Subsection 2.1 and detailed proof of Theorem
1 in Subsection 2.2.

2.1 Preliminary Results
First, we provide some results for affine functions on Hadamard manifoldM.

Lemma 1 ( [1]). Let x ∈M and v ∈ TxM be given, and define function f :M→ R as

f(y) :=
〈
v, Exp−1x y

〉
, ∀y ∈M.

Then, gradf(y) = Pγ(0)γ(1)(v), where γ : [0, 1] → M is the geodesic curve such that γ(0) = x and γ(1) = y, and Pγ(0)γ(1)
denotes the parallel transport along γ.

For smooth functions with Lipschitz gradient on Hadamard manifolds, we have the following descent lemma which resembles the
one in the Euclidean spaces, see Proposition A.24 of [2].
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Lemma 2. Let h :M→ R be a continuously differentiable function that has L-Lipschitz gradient, then

h(y) ≤ h(x) +
〈
∂h(x), Exp−1x y

〉
+
L

2
d2(x,y), ∀x,y ∈M.

Proof. Let γ : [0, 1]→M be the unique geodesic joining x and y such that γ(0) = x, γ(1) = y and γ′(0) = Exp−1x y. It is easy to
show that

d(x, γ(t)) = td(x,y), ∀t ∈ [0, 1].

Let h̃ = h ◦ γ : [0, 1]→ R, then the chain rule implies that

h̃′(t) =
〈
∂h(γ(t)), Pγ(0)γ(t)(γ

′(0))
〉
γ(t)

.

Applying the fundamental theorem of calculus to h̃, we get

h(y)− h(x) =h̃(1)− h̃(0) =

∫ 1

0
h̃′(t)dt

=

∫ 1

0

〈
∂h(γ(t)), Pγ(0)γ(t)(γ

′(0))
〉
γ(t)

dt

1©
= 〈∂h(x), γ′(0)〉x +

∫ 1

0

〈
∂h(γ(t))− Pγ(0)γ(t)(∂h(x)), Pγ(0)γ(t)(γ

′(0))
〉
γ(t)

dt

2©
≤ 〈∂h(x), γ′(0)〉x +

∫ 1

0
Ld2(x,y)tdt

=
〈
∂h(x), Exp−1x y

〉
+
L

2
d2(x,y),

where to get 1© we used 〈∂h(x), γ′(0)〉x =
〈
Pγ(0)γ(t)(∂h(x)), Pγ(0)γ(t)(γ

′(0))
〉
γ(t)

since the inner product does not change
under the parallel transport along geodesics, and to get 2© we used the Cauchy-Schwartz inequality and the fact that h has L-Lipschitz
gradient.

With the above descent lemma in hand, we can prove that sufficient decrease of the objective function value is guaranteed after a
proximal step like (10) or (11) in the main text.

Lemma 3. Let h :M→ R be a continuously differentiable function that has L-Lipschitz gradient and let σ :M→ R ∪ {+∞} be
a PLS function with infx∈M σ(x) > −∞. For any fixed α ∈ R and y ∈ dom σ, let

y+ ∈ arg min
x∈M

σ(x) +
〈
Exp−1y x, ∂h(y)

〉
+
α

2
d2(y,x),

we have

σ(y+) + h(y+) ≤ σ(y) + h(y)− α− L
2

d2(y+,y).

Proof. Since y+ is a minimizer, let x = y in the objective function, we have

σ(y+) +
〈

Exp−1y y+, ∂h(y)
〉

+
α

2
d2(y,y+) ≤ σ(y).

Moreover, since h has L-Lipschitz gradient, it follows from Lemma 2 that

h(y+) ≤ h(y) +
〈

Exp−1y y+, ∂h(y)
〉

+
L

2
d2(y,y+).

Adding the above two inequalities yields the inequality we require.

Regarding the subdifferential of the objective function Ψ defined in (9) of the main text, we have the following result whose
derivation is similar to that in [3].

Proposition 4 ( [4]). Let Ψ be as in (9), then for all (x,y) ∈ dom Ψ = dom f + dom g, we have

∂Ψ(x,y) = {∂f(x) + ∂xh(x,y)} × {∂g(y) + ∂yh(x,y)} = ∂xΨ(x,y)× ∂yΨ(x,y).

All the above results will be used to prove Theorem 1 in the next subsection. The next result is related to the K-L property. Although
not needed in our proof of Theorem 1, it is helpful to understand the K-L property. In particular, we show that if x̄ ∈ dom σ is not a
critical point of σ (i.e. x̄ /∈ crit σ) then K-L inequality holds at x̄.

Proposition 5 ( [4]). Let σ :M→ R ∪ {+∞} be a PLS function and x̄ ∈ dom ∂σ such that 0 /∈ ∂σ(x̄). Then the K-L inequality
holds at x̄.
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Proof. For any δ > 0, take φ(t) = t/δ, U = B(x̄, δ/2), η = δ/2, then for each x ∈ dom σ, we have

φ′(σ(x)− σ(x̄))dist(0, ∂σ(x)) = dist(0, ∂σ(x))/δ. (1)

Notice that x ∈ U ∩ [σ(x̄) < σ < σ(x̄) + η] implies

d(x, x̄) + |σ(x)− σ(x̄)| < δ. (2)

We further claim that for each x satisfying (2), it holds

dist(0, ∂σ(x)) ≥ δ. (3)

Otherwise, there exist sequences {(xk,uk) : uk ∈ ∂σ(xk)} and {δk} ⊂ R++ such that δk → 0 as k →∞ and

d(xk, x̄) + |σ(xk)− σ(x̄)| < δk, ‖uk‖ < δk,

which implies
xk → x̄, σ(xk)→ σ(x̄), uk ∈ ∂σ(xk), and ‖uk‖ → 0.

Thus, 0 ∈ ∂σ(x̄), which is a contradiction with the assumption.
Therefore, combining (1), (2) and (3), we get

φ′(σ(x)− σ(x̄))dist(0, ∂σ(x)) ≥ 1.

So, the K-L inequality holds at x̄.

2.2 Proof of Theorem 1
Following the idea of [5], [6], we outline the proof in three steps: (1) sufficient decrease of objective function value; (2) a subdifferential
lower bound for the iterates gap; (3) using the K-L property.

We first show the sufficient decrease of objective function value under Assumption 1. For simplicity of notations, we use Ψk :=
Ψ(xk,yk) for k ≥ 0 in the sequel.

Lemma 6. Suppose Assumption 1 holds. Let {(xk,yk)}k∈N be the sequence generated by PALMR. The following assertions hold.

(i) The sequence {Ψk}k∈N is nonincreasing and satisfies
τ

2
(d2M1

(xk+1,xk) + d2M2
(yk+1,yk)) ≤ Ψk −Ψk+1, (4)

where τ := min{(µ1 − 1)λ−1 , (µ2 − 1)λ−2 } > 0.
(ii) We have

∞∑
k=0

(
d2M1

(xk+1,xk) + d2M2
(yk+1,yk)

)
<∞, (5)

which implies

lim
k→∞

dM1
(xk+1,xk) = lim

k→∞
dM2

(yk+1,yk) = 0. (6)

Proof. (i) Applying Lemma 3 to subproblems (10) and (11), we get

f(xk+1) + h(xk+1,yk) ≤f(xk) + h(xk,yk)− ck − L1(yk)

2
d2M1

(xk+1,xk),

g(yk+1) + h(xk+1,yk+1) ≤g(yk) + h(xk+1,yk)− dk − L2(xk+1)

2
d2M2

(yk+1,yk).

Adding the above two inequalities, we obtain for k ≥ 0 that

Ψk −Ψk+1
1©
≥ (µ1 − 1)L1(yk)

2
d2M1

(xk+1,xk) +
(µ2 − 1)L2(xk+1)

2
d2M2

(yk+1,yk)

2©
≥ (µ1 − 1)λ−1

2
d2M1

(xk+1,xk) +
(µ2 − 1)λ−2

2
d2M2

(yk+1,yk)

≥τ
2

(d2M1
(xk+1,xk) + d2M2

(yk+1,yk)), (7)

where in 1© we used ck = µ1L1(yk), dk = µ2L2(xk+1) and µ1, µ2 > 1, and in 2© we used the assumption inf{L1(yk) : k ∈
N} ≥ λ−1 and inf{L2(xk) : k ∈ N} ≥ λ−2 .

(ii) Inequality (4) shows that {Ψk}k∈N is nonincreasing sequence, and we know from Assumption 1(i) that infx,y Ψ(x,y) > −∞,
it follows that {Ψk}k∈N converges. Denote the limit by Ψ∗, we have

lim
k→∞

Ψk = Ψ∗. (8)
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Let K be a positive integer and sum (7) from k = 0 to k = K , we get

Ψ0 −ΨK+1 ≥ τ

2

K∑
k=0

d2M1
(xk+1,xk) + d2M2

(yk+1,yk).

Taking K →∞ in the above inequality leads to
∞∑
k=0

d2M1
(xk+1,xk) + d2M2

(yk+1,yk) ≤ 2(Ψ0 −Ψ∗)

τ
< +∞,

which completes the proof.

Next, we derive a subdifferential lower bound for the gap between two consecutive iterates, and study some properties of the
limiting points of the sequence of iterates under the assumption of boundedness.

Lemma 7. Suppose Assumption 1 holds. Let {(xk,yk)}k∈N be the sequence generated by PALMR which is assumed to be bounded.
For each k ≥ 0, define

Ak+1
x =ckExp−1

xk+1x
k + ∂xh(xk+1,yk+1)− Pγkx(0)γkx(1)∂xh(xk,yk)

Ak+1
y =dkExp−1

yk+1y
k + ∂yh(xk+1,yk+1)− Pγky (0)γky (1)∂y, h(xk+1,yk).

where γkx : [0, 1]→M1 is the geodesic joining xk and xk+1 such that γkx(0) = xk and γkx(1) = xk+1, and γky is similarly defined.
Then

(Ak+1
x , Ak+1

y ) ∈ ∂Ψ(xk+1,yk+1) ⊆ Txk+1M1 × Tyk+1M2. (9)

Moreover, we have

‖Ak+1
x ‖xk+1 ≤ (1 + µ1)λ+1 dM1(xk+1,xk) + LdM2(yk+1,yk), ‖Ak+1

y ‖yk+1 ≤ (1 + µ2)λ+2 dM2(yk+1,yk). (10)

Proof. Since xk+1 is a minimizer of subproblem (10), by the Fermat’s rule, we have

0 ∈∂
(
f(x) +

〈
Exp−1

xk
x, ∂xh(xk,yk)

〉
+
ck
2
d2M1

(xk,x)
)∣∣∣

x=xk+1

=∂f(xk+1) + Pγkx(0)γkx(1)∂xh(xk,yk)− ckExp−1
xk+1x

k, (11)

where we used Lemma 1, Proposition 4 and the fact [4] that ∂xd2M(x′,x) = −2Exp−1x x′ for Hadamard manifold M to get the
equality. Similarly, we also have

0 ∈∂g(yk+1) + Pγky (0)γky (1)∂yh(xk+1,yk)− ckExp−1
yk+1y

k. (12)

Combining (11) and (12) , we get

Ak+1
x ∈ ∂f(xk+1) + ∂xh(xk+1,yk+1), Ak+1

y ∈ ∂g(yk+1) + ∂yh(xk+1,yk+1),

which, together with Proposition 4, results in the assertion in (9).
Now, we estimate the norms of Ak+1

x and Ak+1
y as follows.

‖Ak+1
x ‖xk+1 ≤ckd(xk+1,xk) + ‖∂xh(xk+1,yk+1)− Pγkx(0)γkx(1)∂xh(xk,yk)‖xk+1

1©
≤ckd(xk+1,xk) + ‖∂xh(xk+1,yk+1)− Pγkx(0)γkx(1)∂xh(xk,yk+1)‖xk+1 + ‖∂xh(xk,yk+1)− ∂xh(xk,yk)‖xk
2©
≤(ck + L1(yk+1))dM1

(xk+1,xk) + LdM2
(yk+1,yk)

≤(1 + µ1)λ+1 dM1(xk+1,xk) + LdM2(yk+1,yk),

where the first two inequalities are obtained from triangular inequality and in 1© we used the fact ‖Pγkx(0)γkx(1)∂xh(xk,yk+1) −
Pγkx(0)γkx(1)∂xh(xk,yk)‖xk+1 = ‖∂xh(xk,yk+1)− ∂xh(xk,yk)‖xk , and in 2© we used the Lipschitz continuity in Assumption 1
(ii)-(iii) since we assume that {(xk,yk)}k∈N is bounded.

Similarly, from the Lipschitz continuity of ∂yh, we get

‖Ak+1
y ‖yk+1 ≤dkdM2

(yk+1,yk) + ‖∂yh(xk+1,yk+1)− Pγky (0)γky (1)∂yh(xk+1,yk)‖yk+1

≤dkdM2
(yk+1,yk) + L2(xk+1)dM2

(yk+1,yk)

≤(1 + µ2)λ+2 dM2
(yk+1,yk).

Therefore, we obtain the assertions in (10).
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It follows from Lemma 6 (ii) and Lemma 7 that

lim
k→∞

‖Akx‖xk = lim
k→∞

‖Aky‖yk = 0. (13)

In addition, for k ≥ 1 we have

dist(0, ∂Ψ(xk,yk)) ≤‖(Akx, Aky)‖(xk,yk) ≤ β0(‖Akx‖2xk + ‖Aky‖2yk)1/2

≤β0[2((1 + µ1)λ+1 )2d2M1
(xk,xk−1) + (2L2 + ((1 + µ2)λ+2 )2)d2M2

(yk,yk−1)]1/2

≤β(d2M1
(xk,xk−1) + d2M2

(yk,yk−1))1/2 → 0, as k →∞, (14)

where β0 is a universal constant 1 and β := β0 max

{√
2(1 + µ1)λ+1 ,

√
(2L2 + ((1 + µ2)λ+2 )2)

}
.

Under the assumption that {(xk,yk)}k∈N is bounded, there exists at least one limit point. We denote the set of all limiting points
of {(xk,yk)}k∈N as Γ(x0,y0), that is

Γ(x0,y0) := {(x∗,y∗) ∈M1 ×M2 : ∃ subsequence (xkj ,ykj )→ (x∗,y∗) as j →∞}.

Some properties of Γ(x0,y0) are presented in Lemma 8.

Lemma 8. Suppose Assumption 1 holds. Let {(xk,yk)}k∈N be the sequence generated by PALMR which is assumed to be bounded.
Then the following assertions hold.

(i) Γ(x0,y0) ⊆ crit Ψ is a nonempty, compact and connected set and

lim
k→∞

dist((xk,yk),Γ(x0,y0)) = 0. (15)

(ii) Ψ is finite and constant on Γ(x0,y0), which equals to Ψ∗.

Proof. (i) Since the sequence {(xk,yk)}k∈N is bounded, there exists at least one limit point, so Γ(x0,y0) is a nonempty bounded
closed set, which, together with the Hopf-Rinow’s Theorem [7], implies that it is compact. It is easy to show

lim
k→∞

dist((xk,yk),Γ(x0,y0)) = 0

by the definition of limit point. The connectedness can be proved by contradiction. Suppose Γ(x0,y0) is not connected, which
means there exist two nonempty and closed disjoint subsets C0 and C1 of Γ(x0,y0) such that C0 ∪ C1 = Γ(x0,y0). According
to the smooth Urysohn Lemma [8], there exists a smooth function ζ : M1 ×M2 → [0, 1] such that C0 = ζ−1(0) and C1 =
ζ−1(1). Setting U0 := [ζ < 1/4] and U1 := [ζ < 3/4], we obtain two open neighborhoods of C0 and C1, respectively. Since
lim
k→∞

dist((xk,yk),Γ(x0,y0)) = 0, there exists some integer k0 such that (xk,yk) ∈ U0 ∪ U1 for all k ≥ k0. Let δk = ζ(xk,yk),

the sequence {δk}k∈N satisfies

(1) δk /∈ [1/4, 3/4] for all k ≥ k0,
(2) there exists infinitely many k such that δk < 1/4,
(3) there exists infinitely many k such that δk > 3/4,
(4) ζ is uniformly continuous on compact sets which, together with the boundedness of {(xk,yk)}, dM1(xk+1,xk) → 0 and

dM2(yk+1,yk)→ 0, implies that |δk+1 − δk| → 0 as k →∞,

simultaneously. However, there exists no sequence satisfying all the above four requirements. Therefore, Γ(x0,y0) is connected.
Now, we show that every point (x∗,y∗) in Γ(x0,y0) is a critical point of Ψ. Suppose (xkj ,ykj ) → (x∗,y∗) as j → ∞, since

both f and g are PLS functions, we have

lim inf
j→∞

f(xkj ) ≥ f(x∗) and lim inf
j→∞

g(ykj ) ≥ g(y∗). (16)

From subproblem (10), we have

f(xkj ) +
〈

Exp−1
xkj−1x

kj , ∂xh(xkj−1,ykj−1)
〉

+
ckj−1

2
d2M1

(xkj ,xkj−1)

≤ f(x∗) +
〈

Exp−1
xkj−1x

∗, ∂xh(xkj−1,ykj−1)
〉

+
ckj−1

2
d2M1

(x∗,xkj−1),

which yields

f(xkj ) ≤f(x∗) +
〈

Exp−1
xkj−1x

∗, ∂xh(xkj−1,ykj−1)
〉
−
〈

Exp−1
xkj−1x

kj , ∂xh(xkj−1,ykj−1)
〉

+
ckj−1

2
d2M1

(x∗,xkj−1)

≤f(x∗) + (dM1(x∗,xkj−1) + dM1(xkj ,xkj−1))‖∂xh(xkj−1,ykj−1)‖xkj−1 +
ckj−1

2
d2M1

(x∗,xkj−1),

1. For any (u,v) ∈ TxM1×TyM2, the function (u,v)→ (‖u‖2x+‖v‖2y)−1/2 defines a norm on the linear space TxM1×TyM2. On the other hand,
‖(u,v)‖(x,y) also defines a norm. Due to the equivalence of norms, there exists a universal constant β0 such that ‖(u,v)‖(x,y) ≤ β0(‖u‖2x + ‖v‖2y)−1/2
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where we used the Cauchy-Schwarz inequality in the last inequality. From Lemma 6 (ii), we know lim
j→∞

dM1
(xkj ,xkj−1) = 0, which

implies lim
j→∞

xkj−1 = x∗. Note that ckj−1 is bounded and ∂xh is continuous and thus bounded. Taking lim sup
j→∞

on both sides of the

above inequality yields lim sup
j→∞

f(xkj ) ≤ f(x∗). By a similar argument we obtain lim sup
j→∞

g(ykj ) ≤ g(y∗). Thus, in view of (16),

we have
lim
j→∞

f(xkj ) = f(x∗) and lim
j→∞

g(ykj ) = g(y∗),

which leads to

lim
j→∞

Ψkj → Ψ(x∗,y∗). (17)

In addition, from Lemma 7 we know that (A
kj
x , A

kj
y ) ∈ ∂Ψ(xkj ,ykj ) which, together with equation (13) and the closedness of ∂Ψ,

implies that 0 ∈ ∂Ψ(x∗,y∗). From the definition of critical point, we get (x∗,y∗) is a critical point of Ψ. Hence Γ(x0,y0) ⊆ crit Ψ.
(ii) From equation (17) and the fact that {Ψk}k∈N converges to Ψ∗, we get Ψ(x∗,y∗) = Ψ∗ for any (x∗,y∗) ∈ Γ(x0,y0). So

assertion (ii) holds.

Next, we prove that the sequence generated by PALMR converges to a critical point of the objective function Ψ(x,y) in (9) of the
main text. For this purpose, we need the K-L property of Ψ. With this property, we have the following result, which is adapted from
Lemma 6 of [6].

Lemma 9. Let Γ ⊆ M be a compact set and σ : M → R ∪ {+∞} be a PLS function such that it is constant on Γ and has K-L
property at each point of Γ. Then, there exist ε > 0, η > 0 and a continuous concave φ satisfying Definition 4 (i), such that for all
p̄ ∈ Γ and all p ∈ {p ∈M : dist(p,Γ) < ε} ∩ [σ(p̄) < σ(p) < σ(p̄) + η], we have

φ′(σ(p)− σ(p̄))dist(0, ∂σ(p)) ≥ 1.

Equipped with all these results, we are ready to prove Theorem 1.

Proof. Suppose the sequence {dM1×M2
((x0,y0), (xk,yk))}k∈N is bounded, or equivalently, the sequence {(xk,yk)}k∈N is bounded.

Then Lemma 8 (i) shows that the limit set Γ(x0,y0) is a nonempty compact set and equalities (8) and (15) hold. If there exists integer
k0 ≥ 0 such that Ψk0 = Ψ∗, then the decreasing property (4) in Lemma 6 shows that {(xk,yk)}k≥k0 is stationary and the claimed
results are trivial to prove. In the rest of the proof, we assume Ψk > Ψ∗ for all k ≥ 0.

(i) Lemma 8 (ii) shows that Ψ is constant on Γ(x0,y0) and equals to Ψ∗. Applying Lemma 9 with Γ = Γ(x0,y0) and σ = Ψ,
there exist ε > 0, η > 0 and a continuous concave φ satisfying Definition 4 (i), such that for all (x,y) in the intersection

{(x,y) ∈M1 ×M2 : dist((x,y),Γ(x0,y0)) < ε} ∩ [Ψ∗ < Ψ(x,y) < Ψ∗ + η],

we have

φ′(Ψ(x,y)−Ψ∗)dist(0, ∂Ψ(x,y)) ≥ 1. (18)

For the above ε and η, equalities (8) and (15) imply that there exists integer k0 such that

dist((xk,yk),Γ(x0,y0)) < ε and Ψ∗ < Ψk < Ψ∗ + η, ∀k ≥ k0,

which further implies
φ′(Ψk −Ψ∗)dist(0, ∂Ψ(xk,yk)) ≥ 1

holds for k ≥ k0. Substituting inequality (14) into the above inequality, we get

φ′(Ψk −Ψ∗) ≥ β−1(d2M1
(xk,xk−1) + d2M2

(yk,yk−1))−1/2. (19)

Define ∆s,t := φ(Ψs −Ψ∗)− φ(Ψt −Ψ∗), then the concavity of φ yields that for k ≥ k0
∆k,k+1 ≥φ′(Ψk −Ψ∗)(Ψk −Ψk+1)

≥ τ

2β
(d2M1

(xk,xk−1) + d2M2
(yk,yk−1))−1/2(d2M1

(xk+1,xk) + d2M2
(yk+1,yk)),

or equivalently,

(d2M1
(xk+1,xk) + d2M2

(yk+1,yk))1/2 ≤
√

2β

τ
∆k,k+1(d2M1

(xk,xk−1) + d2M2
(yk,yk−1))1/2

≤β
τ

∆k,k+1 +
1

2
(d2M1

(xk,xk−1) + d2M2
(yk,yk−1))1/2,
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where we used the fact that
√
ab ≤ (a+ b)/2 for all a, b ≥ 0 in the second inequality. Summing up the above inequality from k = k0

to k = K , we get

K∑
k=k0

(d2M1
(xk+1,xk) + d2M2

(yk+1,yk))−1/2 ≤β
τ

∆k0,K+1 +
1

2

K∑
k=k0

(d2M1
(xk,xk−1) + d2M2

(yk,yk−1))1/2

≤β
τ
φ(Ψk0 −Ψ∗) +

1

2

K−1∑
k=k0−1

(d2M1
(xk+1,xk) + d2M2

(yk+1,yk))1/2,

where the first inequality follows from the fact that ∆s,r + ∆r,t = ∆s,t and the second inequality follows from φ ≥ 0. A simple
manipulation of the above inequality yields

K∑
k=k0

(d2M1
(xk+1,xk) + d2M2

(yk+1,yk))−1/2 ≤ 2β

τ
φ(Ψk0 −Ψ∗) + (d2M1

(xk0 ,xk0−1) + d2M2
(yk0 ,yk0−1))1/2.

Taking K →∞ leads to
∞∑

k=k0

(d2M1
(xk+1,xk) + d2M2

(yk+1,yk))−1/2 <∞,

which implies that
∞∑
k=0

dM1(xk+1,xk) <∞ and
∞∑
k=0

dM2(yk+1,yk) < +∞.

(ii) From assertion (i) we know that both sequences {xk}k∈N and {yk}k∈N are Cauchy sequences on Hadamard manifolds. Thus,
by the Hopf-Rinow’s Theorem we infer that both sequences converge. Denote the limit points by x∗ and y∗, then we conclude from
Lemma 8 that (x∗,y∗) is a critical point of Ψ.

3 PARTIAL DERIVATIVES OF E

In this section, we derive partial derivatives of the loss function E in the main text via the caculus of variation approach. For this
purpose, we denote pε = Expp(εv) the neighboring point of p along tangent vector direction v, where ε ∈ R and v is an arbitrary
tangent vector of p. We also let v̂j denote the parallel transport of vj from p to pε.

By taking derivative of E
(
pε, {v̂j}, {gi}

)
at ε = 0 we have

∂εE|ε=0

=
1

2

∑
i

∂εd
2
(
yci , Exppε

(∑
j

xji v̂j
))∣∣∣∣∣∣

ε=0

=
∑
i

〈
−Exp−1

Exppε

(
xji v̂j

)yci , ∂εExppε
(∑

j

xji v̂j
)〉∣∣∣∣∣∣

ε=0

=
∑
i

〈
−Exp−1ŷi

yci , ∂εExppε
(∑

j

xji v̂j
)
|ε=0

〉
ŷi

=
∑
i

〈
−Exp−1ŷi

yci , dpExpp

(∑
j

xjivj
)
v

〉
ŷi

=
∑
i

〈
−
(
dpExpp

(∑
j

xjivj
))†

Exp−1ŷi
yci , v

〉
p

,

where in the second equality we used the fact that ∂pd2M(p′,p) = −2Exp−1p p′ for Hadamard manifoldM and in the last equality we
used the definition of adjoint derivative. As a result, we have

∂pE = −
∑
i

(
dpExpp

(∑
j

xjivj
))†

Exp−1ŷi
yci .
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For any fixed j0 satisfying 1 ≤ j0 ≤ d and arbitrary v from TpM, let vεj0 = vj0+εv and take derivative ofE
(
p,vεj0 , {vj}j 6=j0 , {gi}

)
at ε = 0, we have

∂εE|ε=0

=
∑
i

〈
−Exp−1ŷi

yci , ∂εExpp

( ∑
j 6=j0

xjivj + xj0i vεj0
)∣∣∣∣
ε=0

〉
ŷi

=
∑
i

〈
− Exp−1ŷi

yci , dvExpp

(∑
j

xjivj
)
(xj0i v)

〉
yi

=
∑
i

〈
−xj0i

(
dvExpp

(∑
j

xjivj
))†

Exp−1ŷi
yci , v

〉
p

.

Therefore,

∂vjE = −
∑
i

xji

(
dvExpp

(∑
j′

xj
′

i vj′
))†

Exp−1ŷi
yci

for j = 1, · · · , d. By a similar procedure, we get

∂giE = −
(
dvExpyi(gi)

)†
Exp−1yci

ŷi

for i = 1, · · · , N .

4 MANIFOLD OF SYMMETRIC POSITIVE DEFINITE MATRICES

It is well known that the set of n×n SPD matrices S++(n) is a Riemannian symmetric space with nonpositive sectional curvature [9].
Hence, S++(n) is a Hadamard manifold. For any p ∈ S++(n), the tangent space at p, which we denote as TpM, is the space of
n× n symmetric matrices S(n). The inner product of two tangent vectors u, v ∈ TpM is given by

〈u,v〉p = Tr(p−1/2up−1vp−1/2), (20)

where Tr(·) is the trace of matrices. The exponential map and the inverse exponential map are given by

Expp(v) = p1/2exp(p−1/2vp−1/2)p1/2, (21)

and

Exp−1p q = p1/2log(p−1/2qp−1/2)p1/2, (22)

respectively, where exp(·) and log(·) denote matrix exponential and logarithm [10], respectively. The geodesic distance between any
two points p, q ∈ S++(n) is given by

d(p, q) = Tr(log2(p−1/2qp−1/2)). (23)

Let v ∈ TpM, the parallel transport of v along the geodesic from p to q is given by

Ppq(v) = p1/2up−1/2vp−1/2up1/2, (24)

where u = exp(p−1/2 · Exp−1p q · p−1/2/2).

5 ADDITIONAL EXPERIMENTS ON REAL DTI DATA

In Subsection 4.2 of the main paper, we conducted experiments on a real DTI data with three different settings: no gross error, 20%
manual gross error, and 20% registration error. In this section, we provide more information and addtional experiments on the DTI data.
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Fig. 1. Tensor deviation between training data without gross error and with 20% registration error. On each voxel, we compute an average FA value
over all 58 patients and plot the FA map over the whole slice in the first column. Similarly, we compute a deviation vector of length 58 (the number
of patients in the dataset) whose maximum, minimum, and median values are shown in three heat maps, respectively.

5.1 Additional Information on DTI Data with Registration Error
In Fig. 1, we show the tensor deviation between training data without gross error and training data with 20% registration error. On
each voxel, we compute a deviation vector consisting of 58 (the number of patients in the dataset) entries, where each entry records the
geodesic distance between the tensor without gross error and the tensor with 20% registration error of the same patient. The maximum,
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(a) Slice z = 32 (b) Slice x = 55

(c) Slice y = 64 (d) Slice z = 24

(e) Slice x = 64 (f) Slice y = 45

Fig. 2. Performance comaprison of MGLM and PALMR on six slices. On each voxel, we compare the median prediction error (measured in both
the relative FA error and MSGE) on the testing data of MGLM and PALMR. If MGLM achieves smaller error than PALMR, we assign -1 to the voxel;
if MGLM achieves larger error than PALMR, we assign 1 to the voxel; if the voxel is outside the mask or the error difference bwtween MGLM and
PALMR is less than 1e-3, we assign 0 to the voxel. In each subfigure, there are four subplots corresponding to two experimental settings under two
error metrics.
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Fig. 3. Slice z = 32 and two ROIs. For each voxel in the ROIs, the underlying intensity value indicates FA value.

minimum, and median values of the deviation vector are shown in three heat maps, respectively. As a reference, for each voxel we also
compute the population average FA value on the origianl clean data, and plot the average FA map for all slices which are shown in
the first column of Fig. 1. From Fig. 1, we observe that the magnitude of registration errors varies a lot among different patients and
different voxels. In particular, on the boundary region of the mask the registration error can be very high, as shown in the second column
of Fig. 1. However, such high registration error on the boundary happens to only a small fraction of patients, since in the same regions
the median deviation is usually small, as shown in the last column of Fig. 1. In addition, the last two columns of Fig. 1 demonstrate
that registration errors appear in a structured manner, namely, registration errors with moderate median deviation appears in the interior
of white matter while only a tiny fraction of errors with extreme magnitude appears on the boundary. Based on this observation, in our
experiments, we focus on those voxels whose minimum registration errors are larger than certain threshold, that is, the interior regions
of the white matter.

In the main paper, we presented the distribution of prediction errors on each slice for all comparison methods. In Fig. 2, we show
the comparison results of MGLM and PALMR one each voxel of all six slices, separately. On each voxel, we compare the median
prediction error (measured in both the relative FA error and MSGE) on the testing data of MGLM and PALMR. If MGLM achieves
smaller error than PALMR, we assign -1 to the voxel; if MGLM achieves larger error than PALMR, we assign 1 to the voxel; if the
voxel is outside the mask or the error difference between MGLM and PALMR is less than 1e-3, we assign 0 to the voxel. Since for
training data with 20% registration error, experiments were not conducted on the whole slice, we did not show the comparison result in
this way. From Fig. 2 we have two observations: (1) When the training data contain no gross error, MGLM and PALMR have similar
prediction errors with negligible difference on many voxels, while for the rest of voxels MGLM is better on half of them and PALMR
is better on the other half. Such observation is from the first row of each subfigure. (2) When 20% of the training data contain gross
error, PALMR outperforms MGLM on most of the voxels (i.e., a large portion of white region). This can be observed from the second
row of each subfigure.

5.2 Region of Interest Analysis
To further test the predictability and robustness of our model, we conducted a region of interest (ROI) analysis on the real DTI data.
First, we used all 58 instances as training data and focused on white matter tensors in slice z = 32. Then, we selected two ROIs [11]:
the genu of the corpus callosum (ROI 1) and posterior limb of internal capsule (ROI 2) as shown in Fig. 3. Both ROIs are believed to be
affected by age or gender, and each ROI contains 8×8 voxels. After that, for each voxel in each ROI we trained our model and MGLM
using all 58 training instances either without or with β = 20% manual gross errors with magnitude σg = 5, and applied the trained
models to predict DTI tensors for different ages. Visualization results of MGLM and our model in both ROIs using different ages (age
= 10, 50 and 90) are shown in Fig. 4 and Fig. 5, respectively. In subfigure (a) of each figure, we use a box with blue-dotted boundary
to highlight those voxels where DTI tensors have large visual variation in both size and orientation with respect to age. To investigate
the effect of gender, we apply our model to predict tensors for both male and female on the ROIs. For the sake of comparison, in each
voxel we apply our model to predict two tensors, one for male and the other for female, using the same age, then compute the geodesic
distance between these two tensors. Visualization results are shown in Fig. 6.

In Fig. 4 and Fig. 5, we can observe that both MGLM and PALMR trained on training data without gross errors can identify a
few voxels (highlighted with blue box) where the shape and orientation of tensors change significantly as age increases. Moreover,
the voxels identified are contained in the region of high white matter intensity as shown in Fig. 3. This observation is consistent with
findings in neuroscience [12] that with increasing age, FA values increase in the internal capsule and the corpus callosum. The posterior
limb of the internal capsule and the corpus callosum show the most significant overlaps between white matter intensity and FA changes
with age. We also observe that PALMR has similar predictions as MGLM when both are trained on data without gross error, but
outperforms MGLM when gross errors are present in the training data in the sense that when there are 20% manual gross errors,
PALMR can still predict tensors showing meaningful diffusion trends while the predictions of MGLM are nearly random.
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Fig. 4. Visualization of aging effect on ROI 1: First two rows show results by models trained on data without gross error. Last two rows show results
by models trained on data with 20% manual gross errors. Only tensors in the white matter mask are illustrated. Better viewed in color.

In Fig. 6, we observe that for some regions (e.g. ROI 1 and ROI 2) the diffusion tensors of male and female are quite different
in the shape and orientation. Moreover, in the same region of interest the voxels significantly affected by gender are contained in the
region of high FA values. All these observations imply that gender plays an important role in deciding the diffusion trend in the brain
and is worth further study.

REFERENCES

[1] E. A. Papa Quiroz, “An extension of the proximal point algorithm with Bregman distances on Hadamard manifolds,” J. Glob. Optim., vol. 56, no. 1, pp.
43–59, 2013.



13

PA
L

M
R

w
ith

ou
tg

ro
ss

er
ro

r

(a) age = 10, male (b) age = 50, male (c) age = 90, male

M
G

L
M

w
ith

ou
tg

ro
ss

er
ro

r

(d) age = 10, male (e) age = 50, male (f) age = 90, male

PA
L

M
R

w
ith

20
%

gr
os

s
er

ro
r

(g) age = 10, male (h) age = 50, male (i) age = 90, male

M
G

L
M

w
ith

20
%

gr
os

s
er

ro
r

(j) age = 10, male (k) age = 50, male (l) age = 90, male
Fig. 5. Visualization of aging effect on ROI 2: First two rows show results by models trained on data without gross error. Last two rows show results
by models trained on data with 20% manual gross errors. Only tensors in the white matter mask are illustrated. Better viewed in color.

[2] D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[3] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating minimization and projection methods for nonconvex problems: An approach

based on the Kurdyka-Lojasiewicz inequality,” Math. Oper. Res., vol. 35, no. 2, pp. 438–457, 2010.
[4] J. X. da Cruz Neto, P. R. Oliveira, P. A. S. Jr, and A. Soubeyran, “Learning how to play Nash, potential games and alternating minimization method for

structured nonconvex problems on Riemannian manifolds,” J. Convex Anal., vol. 20, no. 2, pp. 395 – 438, 2013.
[5] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward

splitting, and regularized Gauss-Seidel methods.” Math. Program., vol. 137, pp. 91–129, 2013.
[6] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized minimization for nonconvex and nonsmooth problems,” Math. Program., vol. 146,

no. 1-2, pp. 459–94, 2014.



14

(a) ROI 1, age = 10 (b) ROI 1, age = 50 (c) ROI 1, age = 90

(d) ROI 2, age = 10 (e) ROI 2, age = 50 (f) ROI 2, age = 90
Fig. 6. Visualization of gender effect on different ROIs using predicted tensors by PALMR. The value in each voxel denotes the geodesic distance
between tensors of male and female obtained by our model using training samples without gross error. Better viewed in color.

[7] M. P. do Carmo, Riemannian Geometry. Birkhäuser, 1992.
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